IDENTIFIKASI KANDUNGAN TANNIN DAN SAPONIN HIJAUAN PAKAN SAPI POTONG DI DESA SENAYAN KABUPATEN SUMBAWA BARAT

Oleh:

Apri Sanjani, Mashur, Dina Oktaviana, Novariana SulsiaIsta'in Ningtyas Fakultas Kedokteran Hewan, Universitas Pendidikan Mandalika
*Corresponding author: mashur@undikma.ac.id

Abstract: This study aims to determine the levels of tannin and saponin compounds contained in lamtoro leaves, indigofera leaves and turi leaves used as forage for beef cattle in Senayan Village, Poto Tano District, West Sumbawa Regency. The research method used was laboratory observation using an Ultra Violet-Visible Spectroscopy (UV-VIS) Spectrophotometer at the Integrated Chemistry Laboratory, Faculty of Pharmacy, Stikes Bhakti Husada Mulia Madiun. The results showed that the tannin and saponin levels quantitatively in the three types of forage for beef cattle, namely lamtoro leaf tannins 5.41%, indigofera leaves 7.39% and turi leaves 13.83%. Saponin content of lamtoro leaf is 10.28%, indigofera leaf is 11.82% and turi leaf is 14.55%. Based on these data, it can be concluded that the tannin and saponin levels in turi leaves in this study were higher than indigofera leaves and lamtoro leaves.

Key words: saponin, tannin, turi, indigofera, lamtoro

PENDAHULUAN

Pakan ternak merupakan salah satu input produksi sangat menentukan keberhasilan peternakan karena secara langsung mempengaruhi produktivitas dan efisiensi (Mashur et al., 2022). Ternak ruminansia membutukan pakan hijauan karena merupakan komponen utama dalam sistem pakan dan merupakan sumber pakan yang relatif murah disebagian agroekositem besar di Indonesia. Ketersediaannya yang cukup berfluktuasi, terutama akibat pengaruh curah hujan. Kuantitas dan kualitas hijauan pakan akan menurun selama musim kemarau dan menyebabkan produksi ternak dapat menurun secara drastis. Ketersediaan tanaman pakan yang memiliki kualitas nutrisi tinggi dan mampu tumbuh sepanjang tahun diharapkan dapat mengatasi fluktuasi tersebut, (Darmono, 1993).

Infeksi cacing pada saluran pencernana sapi diantaranya dari kelas Nematoda seperti Haemonchus contortus disebabkan oleh faktor lingkungan dan pakan dapat menyebabkan kerugian bagi peternak karena terjadi penurunan tingkat pertumbuhan dan penurunan berat badan ternak (Beriajaya dan Priyanto, 2004). Daun lamtoro, turi dan indigofera merupakan jenis hijauan pakan ternak yang selain dapat memenuhi kebutuhan protein dan serat yang tinggi juga dapat berfungsi sebagai obat herbal anthelmentik. Anthelmintik merupakan golongan obat yang dapat mematikan atau paralisis (melumpukan) cacing, merusak kutikula cacing, serta mengganggu metabolisme cacing dalam usus hewan sehingga cacing dapat dikeluarkan bersama-sama dengan kotoran. Tannin dan saponin dapat digunakan sebagai anthelmintik. Widyastuti (2001); Saurabh et al. (2010) dan Bahera dkk. (2012) melaporkan bahwa daun lamtoro, daun turi dan daun indogofera mengandung senyawa tanin dan saponin yang berfungsi anthelmintik.

Penggunan obat kimia pada penanganan infeksi helminthiasis dalam jangka panjang dapat membuat hewan/ternak mengalami resintensi antibiotik atau kemampuan kehilangan untuk menghentikan pertumbuhan atau membunuh parasite dalam tubuh ternak. Penggantian obat cacing berbahan kimia dengan obat cacing alami atau berasal dari tumbuhan dipertimbangkan jika memang berpengaruh terhadap mortalitas (kematian) cacing pada saluran pencernaan atau cacing haemonchus conthortus tersebut, sehingga dapat mengantisipasi ditimbulkan dampak yang (Sentana, Penggunaan obat cacing tradisioanl yang berasal dari tanaman diharapkan dapat memenuhi kebutuhan penyediaan obat cacing herbal secara murah dan mudah didapat oleh peternak di pedesaan. Daun lamtoro, daun turi dan daun indigofera merupakan tanaman hijauan pakan ternak yang berpotensi dapat dikembangkan sebagai obat cacing herbal, karena mengandung senyawa tannin dan saponin yang mempunyai efek anthelmintik pada Haemonchus contortus.

Sehubungan dengan hal tersebut telah dilakukan penelitian identifikasi kandungan tanin dan saponin pada daun lamtoro, daun turi dan indigofera yang digunakan sebagai hijauan pakan ternak sapi potong di Desa Senayan Kabupaten Sumbawa Barat.

METODE PENELITIAN

Jenis penelitian ini adalah penelitian observasi analisis laboratorium untuk mengetahui kandungan kadar tanin dan saponin dari daun lamtoro, turi dan indigofera sebagai pakan sapi potong di Desa Senayan Kecamatan Poto Tano Kabupaten Sumbawa Barat dengan Spektrofotometer Ultra Violet-Visible Spectroscopy (UV-VIS). Penelitian ini dilaksanakan pada bulan Maret sampai dengan April 2022.

Pengambilan sample ketiga jenis hijauan yang akan diteliti dilakukan di Desa Senayan Kecamatan Poto Tano Kabupaten Sumbawa Barat. Analisis kadar senyawa tannin dan saponoin di Labolatorium Farmasi Stikes Bhakti Husada Mulia Madiun.

Sampel pada penelitian ini adalah tiga jenis hijauan pakan ternak, yaitu daun lamtoro, daun turi dan daun indigofera yang sering digunakan sebagai pakan ternak sapi potong di kawasan Desa Senayan Kecamatan Poto Tano Kabupaten Sumbawa Barat. Jumlah sampel yang digunakan sebanyak enam, terdiri dari tiga ienis hijauan dan dua ienis senyawa. Setiap satuan sampel disiapkan sebanyak 2500gram daun basah yang dipetik bervariasi mulai dari daun pucuk hingga daun yang tua, kemudian dilakukan pengujian satu kali pengulangan masing-masing sample. Variable yang diamati pada penelitian ini adalah kadar tanin dan saponin pada tiga jenis hijauan pakan ternak yang biasa diberikan oleh peternak sapi potong di Desa Senayan Kecamatan Poto Tano Kabupaten Sumbawa Barat yaitu daun lamtoro, turi dan indigofera.

Tahapan penelitian, sebagai berikut: (1) Daun lamtoro, turi dan indogofera dipetik pada pagi hari, median dikering anginkan selama 7 hari. (2) Ketiga jenis daun tersebut setelah kering dipotong halus dan diblender sehinga membentuk tepung. (3) Tepung ketiiga jenis hijuan ini diaduk agar merata kemudian ditimbang masing masing seberat 100gram lalu dimasukan botol kaca dan ditutup rapat. (4) Sampel berupa tepung dalam kemasan botol dikirim ke Lab. Farmasi Stikes Bhakti Husada Mulia Madiun untuk dianalisis kadar tanin dan saponinnya. (5). Ekstrak dibuat dari masing-masing jenis hijauan yaitu ekstrak daun lamtoro, daun turi dan daun indigofera untuk analisis tannin dan saponin. (6) Dengan metode pengujian analisis golongan senyawa kandungan kadar dengan Spektrofotometri UV-VIS agar dapat diketahui kadar tannin dan saponin masing-masing sampel.

Sebanyak 50 mg sampel ekstrak ditimbang, dilarutkan dengan aquadest ad 50 ml menghasilkan larutan konsentrasi 1000 ppm. Dibuat larutan sampel 50; 100 dan 150 ppm sebanyak 10 ml dengan dipipet 0,5, 1 dan 1,5 ml. Tambahkan 1 ml reagen folin dennis, diamkan 3 menit, kemudian tambahkan 1 ml larutan Na₂CO₃dan diinkubasi selama 40 menit, kemudian dibaca serapannya pada panjang gelombang maksimal. (Ditjen POM, 1995). Ekstrak ditimbang sebanyak 50 mg, dilarukan dengan metanol pa ad 50 mL menghasilkan konsentrasi 1000 ppm. Selanjutnya dibuat konsentrasi sampel 10, 20 dan 30 ppm sebanyak 10 ml dengan dipipet 0,1; 0,2 dan 0,3 ml, ditambahkan pelarut metanol pa ad 10 ml. sebanyak 1 ml masinmasing larutan sampel ditambahkan 11 ml reagen vanilin sulfat dalam icebath. Kemudian dipanaskan pada suhu ± 60°C selama 10 menit. Kemudian didiamkan selama 60 menit di suhu kamar, diukur absorbansinya pada panjang gelombang maksimal (Ditjen POM, 1995).

Data hasil analisis laboratorium kadar tannin dan

saponin ketiga jenis hijauan pakan ternak yang diteliti disajikan dalam bentuk table yang akan dianalisis secara deskriptif.

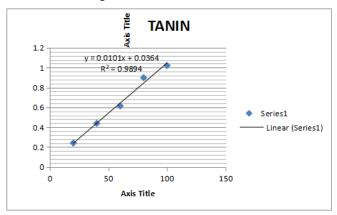
HASIL DAN PEMBAHASAN

Berdasarkan hasil analisis kadar Tannin dan Saponin di Laboratorium Kimia Terpadu Fakultas Farmasi Stikes Bhakti Husada Mulia Madiun dengan menggunakan Spektrofotometer Ultra Violet-Visible Spectroscopy (UV-VIS) diperoleh kadar Tannin dan Saponin dari daun lamtoro, indigofera dan turi yang digunakan sebagai pakan ternak sapi potong di Desa Senayan Kecamatan Poto Tano Kabupaten Sumbawa Barat, seperti ditampilkan pada Tabel 1.

Tabel 1. Kadar Tanin dan Saponin Daun Lamtoro, Daun Indigofera dan Daun Turi Hijauan Pakan Ternak Sapi Potong di Desa Senanyan Kecamatan Poto Tano Kabupaten Sumbawa Barat

No	Jenis Hijau	Konsentrasi	Kadar	Konsentrasi	Kadar
	Pakan Temak	sampel	Tanin	sampel	Saponin
		(ppm)	(%)	(ppm)	(%)
1	Daun lamtoro	50	5,41	10	10.28
		100	9,96	20	12,82
		150	12,83	30	14,73
2	Daun indigofera	50	7,39	10	11,82
		100	9,66	20	16,28
		150	11,64	30	23,00
3	Daun turi	50	13,82	10	14,55
		100	18,38	20	19,64
		150	20,65	30	25,00

Penggunaan konsentrasi sampel tanin pada Tabel 1 lebih tinggi dibandingkan dengan sampel dari saponin karena pada konsentrasi tersebut terdapat kandungan senyawa tannin yang dapat meyerap cahaya dengan panjang gelombang maksimal tannin yaitu 744 nm dengan alat Spektrofotometri UV-VIS. Besarnya absorbansi atau serapan tergantung pada kandungan zat didalamnya. Absorbansi adalah rasio intensitas cahaya yang diserap dengan intensitas cahaya yang datang. Semakin banyak kandungan zat dalam sampel, molekul yang akan menyerap cahaya dengan panjang gelombang tertentu akan menyebabkan absorbansi yang dihasilkan lebih besar, dengan kata lain nilai absorbansi setara dengan konsentrasi. Konsentrasi tersebut diperoleh absorbansi yang baik yang memenuhi Hukum Lambert Beer, yaitu nilai R = 0,9 (Dachriyanus, 2014). Hukum Lambert Beer adalah rumus yang mendeskripsikan melemahnya intensitas pencahayaan saat melalui suatu medium dengan substansi yang dapat melakukan absorpsi. Saat radiasi atau sinar putih melewati cairan berwarna, radiasi yang memiliki panjang gelombang tertentu akan diserap sedangkan radiasi lainnya akan dipancarkan. Hasil penentuan panjang gelombang pada larutan baku hidrokuinon 50 ppm. Larutan baku dilarutkan dengan aquadest 10 ml sehingga didapatkan konsentrasi 1000 ppm yang diukur pada panjang gelombang 200-800 nm (Irianty dan Yenti 2014).


Larutan kurva baku yang dibuat adalah: 20, 40, 60, 80 dan 100 ppm dari larutan standar asam tanat 1000

ppm dengan dipipet 0,1; 0,2; .0,3; 0,4 dan 0,5 ml dilarutkan dalam aquadest ad 5 ml, dibaca pada panjang gelombang maksimal. Data pada Tabel 2 menunjukan bahwa makin tinggi konsentrasi maka serapannya makin besar. Regresi linier dibuat berdasarkan data absorbansi dan konsentrasi larutan standar asam Tanat. Panjang gelombang maksimal standar asam tanat untuk tanin 744 nm pada konsentrasi 50 ppm. Penggunaan Asam Tanat merupakan standar yang paling sesuai untuk Tanin dibandingkan standar yang lain seperti Taninum dan Asam Galat. Penggunaan Asam Tanat dilakukan untuk mendapatkan panjang gelombang maksimal. Data kurva baku yang nilainya bagus dengan korelasi mendekati nilai 1 atau R > 1. Apabila menggunakan standar yang lain nilai R² nya tidak bagus sehingga tidak pilih sebagai standar yang dipakai untuk penentuan kadar Tanin. Hasil ditunjukan pada Gambar 1.

Tabel 2 Hasil Konsentrasi dan Absorbansi Standar Asam Tanat Tanin

Konsentrasi standar asam tanat	Absorbansi rata-rata
20	0,241
40	0,439
60	0,614
80	0,899
100	1,022

Berdasarkan penentuan kurva baku standar hasil pengukuran larutan standar Tanin di atas dapat dilihat bahwa semakin besar konsentrasi maka larutan standar akan memiliki nilai absorbansi semakin besar. Hasil yang diperoleh lalu dibuat kurva kalibrasi konsentrasi absorbansi sebagai berikut:

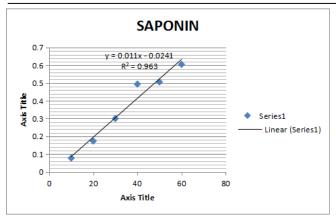
Gambar. 1 Kurva standar absorbansi terhadap konsetrasi Tanin

Berdasarkan Gambar 1 yang membentuk garis lurus (linier) merupakan kemampuan metode analisis yang memberikan respon secara langsung atau transformasi matematika, sehingga didapatkan persamaan regresi dari kurva standar yaitu Y=0.0101X+0.0364 dengan nilai koefisien korelasi (R^2)

= 0,9894; nilai slope = 0,0101 dan 0,0364. Nilai koefisien kolerasi yang mendekati angka 1 menyatakan hubungan yang linear antara konsentrasi dengan serapan yang dihasilkan. Hal ini berarti peningkatan nilai serapan analit berbanding lurus dengan peningkatan konsentrasinya sesuai kriteria koefisien korelasi (R²) yang baik 0,9894 (Miller, 2010).

Grafik regresi linier standar Asam Tanat Tanin yang dibuat dengan cara membandingkan tabel konsentrasi dengan absorbansi sehingga didapat grafik dan persamaan rumus. Contoh perhitungan kadar Tanin pada daun lamtoro pada konsentrasi sampel 50 ppm dengan absorbansi rata-rata 0,091 sebagai berikut:

Y = 0.0101X + 0.0364 0.091 = 0.0101X + 0.0364 0.091 - 0.0364 = 0.0101X 0.0546 = 0.0101X X = 0.0546/0.0101 X = 5.405940594


Jadi kadar tannin daun lamtoro adalah 5,41%, seperti ditampilkan pada Tabel 1.

Larutan dari standar saponin 1000 ppm sebesar 50 ppm dengan dipipet 0,5 ml larutan 1000 ppm dan dilarutkan dengan 10 ml Metanol pa, dibaca serapan pada panjang gelombang 200-800 nm. Larutan kurva baku yang dibuat yaitu: 10, 20, 30, 40, 50 dan 60 ppm dari larutan standar saponin 1000 ppm dengan dipipet 0,1; 0,2; 0,3; 0,4; 0,5 dan 0,6 µl, dilarutkan dalam metanol Pa ad 10 ml. Data Tabel 3 menunjukan bahwa makin besar konsentrasi maka sarapannya makin besar. Regresi linier dibuat berdasarkan data absorbansi dan konsentrasi larutan standar Asam Tanat. Panjang gelombang maksimal standar saponin 257 nm pada konsentrasi 50 ppm. Hasil ditunjukan pada Gambar 2.

Tabel 3 Hasil Konsentrasi dan Absorbansi Standar Asam Tanat Saponin

Konsentrasi standar saponin	Absorbansi rata-rata
10	0,077
20	0,173
30	0,3
40	0,494
50	0,506
60	0,605

Berdasarkan penentuan kurva baku standar hasil pengukuran larutan standar Tanin di atas dapat dilihat bahwa semakin besar konsentrasi maka larutan standar akan memiliki nilai absorbansi semakin besar. Hasil yang diperoleh lalu dibuat kurva kalibrasi konsentrasi absorbansi seperti ditampilkan pada Gambar 2.

Gambar 2. Kurva standar absorbansi terhadap konsetras Saponin

Berdasarkan Gambar 2 yang membentuk garis lurus (linier) merupakan kemampuan metode analisis yang memberikan respon secara langsung atau transformasi matematika. sehingga didapatkan persamaan regresi dari kurva standar, yaitu: Y= 0.011X + 0.0241 dengan nilai $R^2 = 0.963$; nilai slope = 0,011 dan 0,0241 adalah nilai intersep dengan nilai korelasi 0,963. Nilai koefisien kolerasi yang mendekati angka 1 menyatakan hubungan yang linear antara konsentrasi dengan serapan yang dihasilkan. Peningkatan nilai serapan analit berbanding lurus dengan peningkatan konsentrasinya sesuai kriteria koefisien korelasi (R²) yang baik 0,963 (Miller, 2010).

Grafik regresi linier standar Asam Tanat Saponin yang dibuat dengan cara membandingkan tabel konsentrasi dengan absorbansi sehingga didapat grafik dan persamaan rumus. Contoh perhitungan kadar Saponin pada daun lamtoro pada konsentrasi sampel 10 ppm dengan absorbansi rata-rata 0,089 sebagai, berikut:

Y = 0.011X - 0.0241 0.089 = 0.011X - 0.0241 0.089 + 0.0241 = 0.011X 0.1131 = 0.011X X = 0.1131/0.011 X = 10.28181818

Jadi kadar saponin daun lamtoro adalah 10,28%, seperti ditampilkan pada Tabel 1.

Spektrofotometri UV-Vis merupakan salah satu teknik analisis spektroskopi yang memakai sumber radiasi elektromagnetik ultraviolet dekat (190-380) dan sinar tampak (380-780) dengan memakai instrument spektrofotometer. Spektrofotometri UV-Vis melibatkan energi elektronik yang cukup besar pada molekul yang dianalisis, sehingga spektrofotometri UV-Vis lebih banyak dipakai untuk analisis kuantitatif dari pada kualitatif. Senyawa yang dapat dianalisis dengan spektrofotometri UV-Vis yaitu Tanin dan saponin (Mulja, 2005).

Berdasarkan data pada Tabel 4.1 nampak bahwa kadar tannin dan saponin ketiga jenis hijaun pakan ternak sapi potong tersebut berbeda-beda satu dengan lainnya tergantung jenis hijaun dan konsenterasi sampel hijauan yang digunakan. Semakin tinggi konsenterasi sampel yang digunakan maka semakin

tinggi kadar tannin dan saponin. Konsenterasi yang sama, yaitu 50 ppm kadar tannin daun turi lebih tinggi dibandingkan dengan kadar tannin daun indigofera dan daun lamtoro. Sama halnya dengan kadar saponin, pada konsenterasi yang sama, yaitu 10 ppm, diperoleh kadar saponin daun turi lebih tinggi dibandingkan indigofera daun dengan daun dan lamtoro. Berdasarkan data ini nampak bahwa daun turi memiliki kadar tannin dan saponin paling tinggi dibandingkan dengan daun Indigofera dan daun lamtoro.

Berdasarkan Tabel 2 dan 3 nilai absorbansi Tanin yang didapatkan dari konsentrasi 20 ppm yaitu 0,241 absorbansi yang didapatkan dari konsentrasi 40 ppm yaitu 0,439, nilai yang didapat dari konsentrasi 60 ppm yaitu 0,614, nilai yang didapat dari konsentrasi 80 ppm yaitu 0,899 dan nilai absorbansi yang didapatkan pada konsentrasi 100 ppm yaitu 1,022. Nilai absorbansi Saponin yang didapatkan dari konsentrasi 10 ppm yaitu 0,077 absorbansi yang didapatkan dari konsentrasi 20 ppm yaitu 0,173, nilai yang didapat dari konsentrasi 30 ppm yaitu 0,3, nilai yang didapat dari konsentrasi 40 ppm yaitu 0,494, nilai absorbansi yang didapatkan pada konsentrasi 50 ppm yaitu 0,506 dan nilai absorbansi yang didapatkan pada konsentrasi 60 ppm yaitu 0,605.

Berdasarkan penentuan kurva baku standar hasil pengukuran larutan standar Tanin dan Saponin tersebut dapat dilihat bahwa semakin besar konsentrasi maka larutan standar akan memiliki nilai absorbansi yang semakin besar. Hasil ini sesuai dengan hasil penelitian yang dilakukan Amalina (2018) dimana semakin besar konsentrasi yang dibuat semakin besar pula nilai absorbansi yang didapatkan dengan konsentrasi Tanin 20 ppm, 40 ppm, 60 ppm, 80 ppm dan 100 ppm dengan nilai absorbansi secara urut yang didapat yaitu, 0,241, 0,439, 0,614, 0,899 dan 1,022 dan konsentrasi Saponin 10 ppm, 20 ppm, 30 ppm, 40 ppm, 50 ppm dan 60 ppm dengan nilai absorbansi secara urut yang didapat yaitu, 0,077, 0,173, 0,3, 0,494, 0,506 dan 0,605.

Berdasarkan penentuan kurva baku Standar hasil pengukuran larutan standar Tanin dan Saponin di atas dapat dilihat bahwa semakin besar konsentrasi maka larutan standar akan memiliki nilai absorbansi yang semakin besar. Berdasarkan gambar di atas yang membentuk garis lurus (linier) merupakan kemampuan metode analisis yang memberikan respon secara langsung atau transformasi matematika, sehingga didapatkan persamaan regresi dari kurva standar Tanin yaitu Y = 0.0101X + 0.0364 dengan nilai r yaitu 0,9894. Dimana 0,0101 adalah nilai slope, dan 0,0364 adalah nilai intersep dengan nilai korelasi 0,9894 dan kurva standar Saponin yaitu: Y= 0,011X+ 0,0241 dengan nilai R² yaitu 0,963. Dimana 0,011 adalah nilai slope, dan 0,0241 adalah nilai intersep dengan nilai korelasi 0,953. Harga koefisien kolerasi yang mendekati 1 menyatakan hubungan yang linear antara konsentrasi dengan serapan yang dihasilkan, yang berarti peningkatan nilai serapan analit berbanding

lurus dengan peningkatan konsentrasinya sesuai kriteria koefisien korelasi (R²) yang baik 0,989 (Miller, 2010).

Tanin merupakan senyawa aktif metabolit sekunder yang diketahui mempunyai beberapa khasiat vaitu sebagai astringen, anti diare, anti bakteri dan antioksidan. Tanin merupakan komponen zat organik yang sangat kompleks, terdiri dari senyawa fenolik yang sukar dipisahkan dan sukar mengkristal, mengendapkan protein dari larutannya dan bersenyawa dengan protein tersebut (Desmiaty dkk., 2008). Berdasarkan Tabel 1 diketahui kadar tannin pada Daun Lamtoro paling rendah jika dibandingkan dengan kadar tannin Daun Turi dan Daun Indigofera. Hasil penelitian ini juga menunjukkan bahwa kadar tannin daun lamtoro, daun indigofera dan daun turi yang digunakan sebagai bahan pakan ternak sapi potong di Desa Senanyan Kecamatan Poto Tano Kabupaten Sumbawa Barat lebih tinggi dibandingkan dengan hasil penelitian Aye dan Adegun (2013) bahwa kandungan tannin pada daun lamtoro 3,79%; daun indigofera 0,027-0,1% (Risky dkk., 2018) dan daun turi sebesar 0,67% (Lestari dkk., 2021).

Saponin adalah jenis glikosida yang banyak ditemukan dalam tumbuhan dan bersifat kompleks yang memiliki karakteristik berupa buih, sehingga ketika direaksikan dengan air dan dikocok maka akan terbentuk buih Supardjo (2010). Senyawa ini merupakan glikosidaamfipatik yang mengeluarkan busa jika dikocok dengan kencang di dalam larutan. Busanya bersifat stabil dan tidak mudah hilang. Hasil penelitian ini menunjukkan bahwa daun lamtoro memiliki kadar saponin paling tinggi jika dibandingkan dengan kadar saponin daun turi dan daun indigofera. Kadar saponin daun lamtoro, daun indigofera dan daun turi pada penelitian ini secara kuantitatif lebih tinggi dibandingkan dengan hasil penelitian Aye dan Adegun (2013) bahwa daun lamtoro mengandungan kadar saponin 5,88%, kadar saponin indigofera 2,24-4,20 % (Rizky dkk., 2018) dan kandungan saponin pada daun turi 0,87 (Lestari dkk.,2021).

Perbedaan kadar tannin dan saponin ketiga jenis hijauan pakan ternak sapi potong, yaitu daun lamtoro, daun indigofera dan daun turi yang diberikan sebagai pakan sapi potong di Desa Senayan Kecamatan Poto Tano Kabupaten Sumbawa Barat, selain disebabkan oleh jenis hijauan pakan ternak, juga disebabkan oleh perbedaan agroekosistem wilayah, seperti jenis tanah, air, unsur hara dan faktor iklim lainnya (Mashur, 2017).

PENUTUP

a. Simpulan

Berdasarkan hasil identifikasi kadar tannin dan saponin secara kuantitatif menggunakan spektofotometri UV-Vis terhadap ketiga jenis hijuan pakan ternak yang diberikan sebagai pakan sapi potong di Desa Senayan Kecamatan Poto Tano Kabupaten Sumbawa Barat dapat disimpulkan bahwa kadar tannin dan saponin ketiga jenis hijaun pakan sapi potong yaitu tanin daun lamtoro 5,41%, daun indigofera 7,39% dan daun turi 13,83%. Kadar saponin daun lamtoro 10,28%, daun indigofera 11,82% dan daun turi 14,55%. Kadar tannin dan saponin daun turi pada penelitian ini lebih tinggi dibandingkan dengan daun indigofera dan daun lamtoro.

b. Saran

Berdasarkan hasil penelitian ini disarankan untuk dilakukan penelitian lebih lanjut penggunaan ekstrak tannin dan saponin ketiga jenis hijauan pakan ternak tersebut untuk mengetahui daya basmi terhadap penyakit cacing.

DAFTAR PUSTAKA

- Amalina, N. N. 2018. Karakteristik Fisik Bahan Pangan. Fakultas Teknologi Industri Pertanian. Universitas Padjadjaran, Bandung
- Behera et al., (2012). Role of Ocimum canum in prevention of reperfusioninduced Renal ischemia wistar albino in rats. International Journal ofBiomedical and Advance Research.
- Beriajaya, Priyanto, D. 2004. Efektifitas Serbuk Daun Nanas Sebagai Antelmintik Pada sapi Terinfeksi Cacing Nematoda Saluran Pencernaan. Seminar Nasional Peternakan dan Veteriner, hlm 162-169.
- 2014. Analisis Struktur Dachriyanus. Senyawa Organik secara Spektroskopi. Padang: **LPTIK**
- Darmono, 1993. Tata Laksana Usaha SapiKereman. PenerbitKanisius, Yogyakarta.
- Desmiaty, Y.; Ratih H.; Dewi M.A.; Agustin R. 2008. Penentuan Jumlah Tanin Total pada Daun Jati Belanda (Guazuma ulmifolia Lamk) dan Daun Sambang Darah (Excoecaria bicolor Hassk.) Secara Kolorimetri dengan Pereaksi Biru Prusia. Ortocarpus. 2008. 8, 106-109.
- Irianti, S. R., S. R. Yenti., 2014. Pengaruh perbandingan pelarut Ethanol Terhadap Kadar Tanin Pada Sokletasi Daun Gambir. Sagu. 13 (1): 1-7
- Mashur. 2017. The Main Problem of Smallholder Farming in Facing the ASEAN Economic Community in the Producing Region of Beef Cattle in West Nusa Tenggara. The 5thinternational seminar of nutrition and feed sciences "improving livestock productivity, quality and safety to respond to the increasing demand from upper and middle-class consumers".

- Mataram University. pp. 276-294.
- Mashur, M.; Bilad, M.R.; Kholik, K.; Munawaroh, M.; Cheok, Q.; Huda, N.; Kobun, R. The Sustainability and Development Strategy of a Cattle Feed Bank: A Case Study. Sustainability 2022, 14, 7989. https://doi.org/10.3390/su14137989
- Miller, C., 2010. Factors Affecting Blood Pressure and Heart Rate. Available from: http://www.livestrong.com/article/196479-factors-affecting-bloodpressure-heart-rate/ diakses tanggal 28 Januari 2018
- Mulja, M., dan Hanwar, D., 2003, Prinsip-Prinsip Cara Berlaboratorium yang Baik (Good Laboratory Practice), Jurnal Farmasi Airlangga, 3 (2).
- Saurabh J, S. Nayak, Joshi P. 2010. Phytochemuical

- study and physical evalution of Indigofera tinctoria Leaves Intenational J Compr Pharm. 01.
- Sentana, O.K. 2010. Efek Antihelmintik Ekstrak
 Etanol Daun Kemangi (Ocimum
 americanum L.) Terhadap Kematian
 Ascaris suum Goeze sp Secara in vitro
 (Skripsi). Fakultas Kedokteran.
 Universitas Sebelas Maret.
- Supardjo. 2010. Saponin peran dan pengaruhnya terhadap ternak dan manusia. Laboratorium Fakultas Peternakan Jambi.
- Widyastuti, N., Donowati, T., 2001, Peran Beberapa Zat Pengaruh Tumbuhan (ZPT) Tanaman Pada Kultur *In Vitro*, Jurnal Sains dan Teknologi Indonesia 3(5): 55-63.